Dynamics

\rightarrow Kinematics: motion as displacement, velocity and acceleration
Dynamics
\rightarrow Kinetics: force and motion $F=\underline{m}$ a

Rectilinear Kinematics

1- Position

2- Displacement [m,ft]

Displacement

$$
\Delta s=s-s
$$

3- Velocity [$\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$]

The moves of the particles through a displacement Δs during the time interval Δt.

$$
v=\frac{d s}{d t}
$$

4- Acceleration [$\mathrm{m} / \mathrm{s}^{2}, \mathrm{ft} / \mathrm{s}^{2}$]

The velocity of the particle at two points.

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Ex: The car moves in a straight line such that for a short time its velocity is defined by $v=\left(3 t^{2}+2 t\right) \mathrm{ft} / \mathrm{s}$, where t is in seconds. Determine its position and acceleration when $t=3 \mathrm{~s}$. When $t=0$, $s=0$.

Position. Since $v=f(t)$, the car's position can be determined from $v=d s / d t$, since this equation relates v, s, and t. Noting that $s=0$ when $t=0$, we have*

$$
(\stackrel{ \pm}{\boldsymbol{m}})
$$

$$
\begin{aligned}
v & =\frac{d s}{d t}=\left(3 t^{2}+2 t\right) \\
\int_{0}^{s} d s & =\int_{0}^{t}\left(3 t^{2}+2 t\right) d t \\
\left.s\right|_{0} ^{s} & =t^{3}+\left.t^{2}\right|_{0} ^{t} \\
s & =t^{3}+t^{2}
\end{aligned}
$$

When $t=3 \mathrm{~s}$,

$$
s=(3)^{3}+(3)^{2}=36 \mathrm{ft}
$$

Acceleration. Since $v=f(t)$, the acceleration is determined from $a=d v / d t$, since this equation relates a, v, and t.

$$
\begin{aligned}
& \text { (} ~+~) ~ \\
& a=\frac{d v}{d t}=\frac{d}{d t}\left(3 t^{2}+2 t\right) \\
& =6 t+2
\end{aligned}
$$

When $t=3 \mathrm{~s}$,

$$
a=6(3)+2=20 \mathrm{ft} / \mathrm{s}^{2} \rightarrow
$$

Freely Falling Bodies

$$
\begin{aligned}
& \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y}_{\mathrm{A}}=\mathrm{h} \\
& \mathbf{y}_{\mathrm{D}}=0 \\
& \mathbf{y}_{\mathrm{c}}=\mathrm{h}
\end{aligned}
$$

$$
a=g \quad \text { Or } \quad a=-g
$$

Ex: a ball is thrown vertically up word from the top of 18 m tower with an initial velocity of $12 \mathrm{~m} / \mathrm{s}$. Find?

1) The velocity and displacement at any time.
2) The highest elevation
3) The time when the ball reached the ground and the velocity at that time.
4)

$$
\mathrm{dv} / \mathrm{dt}=-9.81
$$

$$
\int_{12}^{v} d v=\int_{0}^{t}-9.81 d t
$$

$$
v=-9.81
$$

$$
v-12=-9.81 t
$$

$$
\mathrm{v}=12-9.81 \mathrm{t} \quad \text { (Instantaneous velocity) }
$$

$$
\mathrm{dy} / \mathrm{dt}=12-9.81 \mathrm{t}
$$

$$
\begin{gathered}
\int_{y_{o}=0}^{y} d y=\int_{0}^{t}(12-9.81 t) d t \\
y=12 t-\frac{9.81}{2} t^{2} \quad \text { (Instantaneous displacement) }
\end{gathered}
$$

2) At highest elevation

$$
v=0
$$

so $0=12-9.81 \mathrm{t}$ then $\mathrm{t}=1.22 \mathrm{sec}$
$y_{\text {at } 1.22}=12 * 1.22-(9.81 / 2) *(1.22)^{2}$ $=7.3 \mathrm{~m}$
$y=7.3 \mathrm{~m}$ from the top
$y=7.3+18=25.3 \mathrm{~m}$ from the ground
3) when the ball hits the ground $y=-18$
$-18=12 t-4.905 t^{2}$
$4.905 t^{2}-12 t-18=0$

$$
t=\frac{12 \mp \sqrt{12^{2}+4 * 18 * 4.905}}{2 * 4.905}
$$

Then $\mathrm{t}=-10.5 \mathrm{sec}$ neglected or $t=3.5 \mathrm{sec}$ then $\quad v_{\mathrm{at} 3.5}=12-9.81 * 3.5=-22.3 \mathrm{~m} / \mathrm{s}$

Types of problems involving motion

1. $x=f(t)$
2. $a=f(t)$

$$
\begin{gathered}
\frac{d v}{d t}=f(t) \\
\int d v=\int f(t) d t
\end{gathered}
$$

$v=g(t)+c$
c is found from the initial condition at $t=0$ and $v=v$ 。
$\frac{d x}{d t}=\mathrm{g}(\mathrm{t})+\mathrm{c}$

$$
\int d x=\int(g(t)+c) d t
$$

Or $\int_{0}^{v} d v=\int_{0}^{t} f(t) d t$
$\operatorname{Or} \int_{v_{o}}^{v} d v=\int_{t_{o}}^{t} f(t) d t$
3. $a=f(v)$

$$
\frac{d v}{d t}=f(v)
$$

$\int_{v_{o}}^{v} \frac{d v}{f(v)}=\int_{t_{o}}^{t} d t \quad$ or $\quad a=v \frac{d v}{d x}$
$v \frac{d v}{d x}=f(v)$

$$
\int_{v_{o}}^{v} v \frac{d v}{f(v)}=\int_{x_{o}}^{x} d x
$$

4. $a=f(x)$

$$
\begin{gathered}
v \frac{d v}{d x}=f(x) \\
\int_{v_{0}}^{v} v d v=\int_{x_{0}}^{x} f(x) d x
\end{gathered}
$$

$$
v=g(x)
$$

EXAMPLE

A small projectile is fired vertically downward into a fluid medium with an initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Due to the drag resistance of the fluid the projectile experiences a deceleration of $a=\left(-0.4 v^{3}\right) \mathrm{m} / \mathrm{s}^{2}$, where v is in m / s. Determine the projectile's velocity and position 4 s after it is fired.

Velocity.

$$
\begin{array}{r}
a=f(v) \quad \text { with } v_{0}=60 \mathrm{~m} / \mathrm{s} \text { when } t=0 \\
(+\downarrow) \quad a=\frac{d v}{d t}=-0.4 v^{3} \\
\int_{60 \mathrm{~m} / \mathrm{s}}^{v}-0.4 v^{3} \\
\left(+\int_{0} d t\right. \\
\left.\frac{1}{-0.4}\left(\frac{1}{-2}\right) \frac{1}{v^{2}}\right|_{60} ^{v}=t-0 \\
\frac{1}{0.8}\left[\frac{1}{v^{2}}-\frac{1}{(60)^{2}}\right]=t \\
v=\left\{\left[\frac{1}{(60)^{2}}+0.8 t\right]^{-1 / 2}\right\} \mathrm{m} / \mathrm{s}
\end{array}
$$

Position.

from $v=d s / d t \quad$ condition $s=0$, when $t=0$,

$$
\begin{gather*}
v=\frac{d s}{d t}=\left[\frac{1}{(60)^{2}}+0.8 t\right]^{-1 / 2} \\
\int_{0}^{s} d s=\int_{0}^{t}\left[\frac{1}{(60)^{2}}+0.8 t\right]^{-1 / 2} d t \\
s=\left.\frac{2}{0.8}\left[\frac{1}{(60)^{2}}+0.8 t\right]^{1 / 2}\right|_{0} ^{t} \\
s=\frac{1}{0.4}\left\{\left[\frac{1}{(60)^{2}}+0.8 t\right]^{1 / 2}-\frac{1}{60}\right\} \mathrm{m}
\end{gather*}
$$

When $t=4 \mathrm{~s}$,

$$
s=4.43 \mathrm{~m}
$$

EXAMPLE

A metallic particle is subjected to the influence of a magnetic field as it travels downward through a fluid that extends from plate A to plate B, Fig. 12-5. If the particle is released from rest at the midpoint C, $s=100 \mathrm{~mm}$, and the acceleration is $a=(4 s) \mathrm{m} / \mathrm{s}^{2}$, where s is in meters, determine the velocity of the particle when it reaches plate B, $s=200 \mathrm{~mm}$, and the time it takes to travel from C to B.

SOLUTION

Velocity.

Since $a=f(s)$, $v d v=a d s$. using $v=0$ at $s=0.1 \mathrm{~m}$

$$
\begin{align*}
& v d v=a d s \\
& \int_{0}^{v} v d v=\int_{0.1 \mathrm{~m}}^{s} 4 s d s \\
&\left.\frac{1}{2} v^{2}\right|_{0} ^{v}=\left.\frac{4}{2} s^{2}\right|_{0.1 \mathrm{~m}} ^{s} \\
& v=2\left(s^{2}-0.01\right)^{1 / 2} \mathrm{~m} / \mathrm{s}
\end{align*}
$$

At $s=200 \mathrm{~mm}=0.2 \mathrm{~m}$,
$v_{B}=0.346 \mathrm{~m} / \mathrm{s}=346 \mathrm{~mm} / \mathrm{s} \downarrow$

Time. The time for the particle to travel from C to B can be obtained using $v=d s / d t$ and Eq. 1, where $s=0.1 \mathrm{~m}$ when $t=0$. From Appendix A,

$$
\begin{gathered}
d s=v d t \\
=2(+\downarrow)-0.01)^{1 / 2} d t \\
\int_{0.1}^{s} \frac{d s}{\left(s^{2}-0.01\right)^{1 / 2}}=\int_{0}^{t} 2 d t \\
\left.\ln \left(\sqrt{s^{2}-0.01}+s\right)\right|_{0.1} ^{s}=\left.2 t\right|_{0} ^{t} \\
\ln \left(\sqrt{s^{2}-0.01}+s\right)+2.303=2 t
\end{gathered}
$$

At $s=0.2 \mathrm{~m}$,

$$
t=\frac{\ln \left(\sqrt{(0.2)^{2}-0.01}+0.2\right)+2.303}{2}=0.658 \mathrm{~s} \quad \text { Ans }
$$

Special Cases of Motion

1) Uniform motion
$\mathrm{v}=$ constant, $\mathrm{a}=0$

$$
\begin{gathered}
\frac{d x}{d v}=v=b \\
\int_{x_{o}}^{x} d x=\int_{0}^{t} b d t
\end{gathered}
$$

$$
x-x_{o}=b t
$$

$$
x=x_{o}+b t
$$

2) Uniformly accelerated motion
a = constant

$$
\frac{d v}{d t}=a
$$

$\int_{v_{o}}^{v} d v=\int a d t=a \int_{0}^{t} d t$
$v-v_{o}=a t$
$v=v_{o}+a t$

$$
\begin{gathered}
\frac{d x}{d t}=v_{o}+a t \\
\int_{x_{o}}^{x} d x=\int_{0}^{t}\left(v_{o}+a t\right) d t \\
x-x_{o}=v_{o} t+a \frac{t^{2}}{2}
\end{gathered}
$$

$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}$

$\mathrm{a}=\mathrm{constant}$

$$
\begin{gathered}
v \frac{d v}{d x}=a \\
\int_{v_{o}}^{v} v d v=\int_{x_{o}}^{x} a d x
\end{gathered}
$$

$$
v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

EXAMPLE

During a test a rocket travels upward at $75 \mathrm{~m} / \mathrm{s}$, and when it is 40 m from the ground its engine fails. Determine the maximum height s_{B} reached by the rocket and its speed just before it hits the ground. While in motion the rocket is subjected to a constant downward acceleration of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. Neglect the effect of air resistance.

SOLUTION

Maximum Height.

$v_{B}=0$. the maximum height $s=s_{B}$
$v_{A}=+75 \mathrm{~m} / \mathrm{s}$ when $t=0$. At
Since a_{c} is constant $\quad a_{c}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
(+\uparrow) \quad v_{B}^{2} & =v_{A}^{2}+2 a_{c}\left(s_{B}-s_{A}\right) \\
0 & =(75 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(s_{B}-40 \mathrm{~m}\right) \\
s_{B} & =327 \mathrm{~m}
\end{aligned}
$$

Ans.
Velocity. To obtain the velocity of the rocket just before it hits the ground,

$$
\begin{aligned}
(+\uparrow) \quad v_{C}^{2} & =v_{B}^{2}+2 a_{c}\left(s_{C}-s_{B}\right) \\
& =0+2\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0-327 \mathrm{~m}) \quad \text { Ans. } \\
v_{C} & =-80.1 \mathrm{~m} / \mathrm{s}=80.1 \mathrm{~m} / \mathrm{s} \downarrow
\end{aligned}
$$

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C,

$$
\begin{aligned}
(+\uparrow) \quad v_{C}^{2} & =v_{A}^{2}+2 a_{c}\left(s_{C}-s_{A}\right) \\
& =(75 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0-40 \mathrm{~m}) \\
v_{C} & =-80.1 \mathrm{~m} / \mathrm{s}=80.1 \mathrm{~m} / \mathrm{s} \downarrow
\end{aligned}
$$

H. W. :

Chapter 12: $1,4,5,7,9,11,28,29,40$

